

- 1 Hemispherically asymmetric volcanic forcing of tropical hydroclimate and water
- 2 isotopologue variability during the last millennium
- Christopher M. Colose¹, Allegra N. LeGrande², Mathias Vuille¹
- 5
- 6 [1] Dept. of Atmospheric & Environmental Sciences, University at Albany, SUNY,
- 7 Albany, NY 12222
- 8 [2] NASA Goddard Institute for Space Studies, New York, NY, 10025
- 9 Correspondence to: Christopher Colose (ccolose@albany.edu)

10 Abstract

11	Volcanic aerosols exert the most important natural radiative forcing of the last
12	millennium. State-of-the-art paleoclimate simulations of this interval are typically forced
13	with diverse spatial patterns of volcanic forcing, leading to different responses in tropical
14	hydroclimate. Recently, theoretical considerations relating the intertropical convergence
15	zone (ITCZ) position to the demands of global energy balance have emerged in the
16	literature, allowing for a connection to be made between the paleoclimate simulations and
17	recent developments in the understanding of ITCZ dynamics. These energetic
18	considerations aid in explaining the well-known historical, paleoclimatic, and modeling
19	evidence that the ITCZ migrates away from the hemisphere that is energetically deficient
20	in response to asymmetric forcing.
21	Here we use two separate general circulation model (GCM) suites of experiments
22	for the Last Millennium to relate the ITCZ position to asymmetries in prescribed volcanic
23	sulfate aerosols in the stratosphere and related asymmetric radiative forcing. We discuss
24	the ITCZ shift in the context of atmospheric energetics, and discuss the ramifications of
25	transient ITCZ migrations for other sensitive indicators of changes in the tropical
26	hydrologic cycle, including global streamflow. For the first time, we also offer insight
27	into the large-scale fingerprint of water isotopologues in precipitation ($\delta^{18}O_p$) in response
28	to asymmetries in radiative forcing.
29	The ITCZ shifts away from the hemisphere with greater forcing. Since the
30	isotopic composition of the ITCZ is relatively depleted compared to areas outside this
31	zone, this meridional precipitation migration results in a large-scale enrichment
32	(depletion) in the isotopic composition of tropical precipitation in regions the ITCZ

- 33 moves away from (toward). Our results highlight the need for careful consideration of the
- 34 spatial structure of volcanic forcing for both impact assessments and for the testing of
- 35 models against paleoclimate evidence.

36 1. Introduction

38	The ITCZ is the narrow belt of deep convective clouds and strong precipitation
39	that develops in the rising branch of the Hadley circulation. Migrations in the position of
40	the ITCZ have important consequences for local rainfall availability, drought and river
41	discharge, and the distribution of water isotopologues (e.g., $\delta^{18}O$ and δD , hereafter
42	simply referred to as water isotopes, with notation developed in section 3.3) that are used
43	to derive inferences of past climate change in the tropics.
44	Meridional displacements of the ITCZ are constrained by requirements of
45	reaching a consistent energy balance on both sides of the ascending branch of the Hadley
46	circulation (e.g., Kang et al., 2008, 2009; Schneider et al., 2014). Although the ITCZ is a
47	convergence zone in near-surface meridional mass flux, it is a divergence zone
48	energetically. The stratification of the tropical atmosphere is such that moist static energy
49	(MSE) is greater aloft than near the surface, compelling Hadley cells to transport energy
50	in the direction of their upper tropospheric flow (Neelin and Held, 1987). If the system is
51	perturbed with preferred heating or cooling in one hemisphere, the anomalous circulation
52	that develops resists the resulting asymmetry by transporting energy from the heated to
53	the cooled hemisphere. Conversely, meridional moisture transport in the Hadley
54	circulation is primarily confined to the low-level equatorward flow, so the response of the
55	tropical circulation to asymmetric heating demands an ITCZ migration away from the
56	hemisphere that is energetically deficient. Since the mean circulation dominates the
57	atmospheric energy transport (AET) in the vicinity of the equator, the recognition that the
58	ITCZ is approximately co-located with the latitude where meridional column-integrated

energy fluxes vanish, has provided a basis for relating the mean ITCZ position to AET.
We note that this perspective focused on atmospheric energetics is distinct from one that
emphasizes sea surface temperature gradients across the tropics (Maroon et al., 2016, in
press).

63	This energetic framework has emerged as a central paradigm of climate change
64	problems, providing high explanatory and predictive power for ITCZ migrations across
65	timescales and forcing mechanisms (Donohoe et al., 2013; McGee et al., 2014; Schneider
66	et al., 2014). It is also a compelling basis for understanding why the climatological
67	annual-mean ITCZ resides in the northern hemisphere (NH); it has been shown that this
68	is associated with ocean heat transport, which in the prevailing climate is directed
69	northward across the equator (Frierson et al., 2013; Marshall et al., 2014). The energetic
70	paradigm also predicts an ITCZ response for asymmetric perturbations that arise from
71	remote extratropical forcing. This phenomenon is exhibited in many numerical
72	experiments, is borne out paleoclimatically, and has gradually matured in its theoretical
73	articulation (Chiang and Bitz, 2005; Brocolli et al., 2006; Kang et al., 2008, 2009;
74	Yoshimori and Brocolli, 2008, 2009; Chiang and Friedman, 2012; Frierson and Hwang,
75	2012; Bischoff and Schneider, 2014; Adam et al., 2016, in press).
76	Thus far, however, little or only very recent attention has been given to the
77	relation between transient ITCZ migrations and explosive volcanism (although see Iles et
78	al., 2014; Liu et al., 2016, section 2). This connection has received recent consideration
79	using carbon isotopes in paleo-records (Ridley et al., 2015) or in the context of volcanic
80	and anthropogenic aerosol forcing in the 20th century (Friedman et al., 2013; Hwang et
81	al., 2013; Allen et al., 2015; Haywood et al., 2015). The purpose of this paper is to use

82	the energetic paradigm as our vehicle for interpreting the climate response in
83	paleoclimate simulations featuring explosive volcanism of varying spatial structure.
84	Much of the existing literature highlighting the importance of spatial structure in
85	volcanic forcing focuses on the problem of tropical vs. high-latitude eruptions and
86	dynamical ramifications of changing pole-to-equator temperature gradients (e.g., Robock,
87	2000; (Stenchikov et al., 2002; Shindell et al., 2004; Oman et al., 2005, 2006; Kravitz
88	and Robock, 2011), which is a distinct problem from one focused on inter-hemispheric
89	asymmetries the volcanic forcing. Furthermore, episodes with preferentially higher
90	aerosol loading in the southern hemisphere (SH) have received comparatively little
91	attention, probably due to the greater propensity for both natural or anthropogenic aerosol
92	forcing to be skewed toward the NH.
93	Here we show that it matters greatly over which hemisphere the aerosol loading is
94	concentrated and that this asymmetry in aerosol forcing has a first-order impact on
95	changes in the tropical hydrologic cycle, atmospheric energetics, and the distribution of
96	the isotopic composition of precipitation.
97	
98	2. Methods
99	
100	To illuminate how the spatial structure of volcanic forcing expresses itself in the
101	climate system, we call upon two state-of-the-art models that were run over the pre-
102	industrial part of the last millennium (LM), nominally 850-1850 C.E., the most recent

- 103 key interval identified by the Paleoclimate Model Intercomparison Project Phase 3
- 104 (PMIP3). An analysis of this time period is motivated by the fact that volcanic forcing is

105	the most important radiative perturbation during the LM (LeGrande and Anchukaitis,
106	2015; Atwood et al., 2016). Furthermore, the available input data that defines volcanic
107	forcing in CMIP5/PMIP3 feature a greater sample of events, larger radiative excursions,
108	and richer diversity in their spatial structure than is available over the historical period.
109	This allows for a robust composite analysis to be performed over this interval.
110	The two GCM's that we use as our laboratory are NASA GISS ModelE2-R
111	(hereafter, GISS-E2) and the Community Earth System Model Last Millennium
112	Ensemble (CESM LME, hereafter, just CESM). The GISS-E2 version used here is the
113	same as the non-interactive atmospheric composition (NINT) physics version used in the
114	CMIP5 initiative (Miller et al., 2014). CESM is a community resource that became
115	available in 2015 (Otto-Bliesner et al., 2016, in press), employing version 1.1 of CESM
116	that consists of several component models each representing different aspects of the Earth
117	system; the atmospheric component is the Community Atmosphere Model version 5
118	(CAM5, see Hurrell et al., 2013), which in CESM features 1.9° latitude x 2.5° longitude
119	horizontal resolution with 30 vertical levels up to \sim 2 hPa. The GISS-E2 model is run at a
120	comparable horizontal resolution (2° x 2.5°) and with 40 vertical levels up to 0.1 hPa.
121	Both GISS-E2 and CESM feature multiple ensemble members that include
122	volcanic forcing, which is one of the motivations for our model choices, since our
123	different volcanic composites (see below) each sample a limited number of events within
124	the LM. There are 15 members in CESM, including ten with all transient forcings during
125	the LM and five volcano-only simulations. This number is much higher than the number
126	of ensembles used for participating LM simulations in CMIP5/PMIP3. The volcanic
127	reconstruction is based on Gao et al., 2008 (G08) and the ensemble spread is generated

128	from round off differences in the initial atmospheric state ($\sim 10^{-14}$ °C changes in the
129	temperature field). Sampling many realizations of internal variability is critical in the
130	context of volcanic eruptions given the different trajectories that can arise in the
131	atmosphere-ocean system in response to a similar forcing (Deser et al., 2012). For GISS-
132	E2, there exist six available members that include a transient volcanic forcing history.
133	Here, however we use only the three simulations that utilize the G08 reconstruction. This
134	is done in order to composite over the same dates as the CESM events, as well as the fact
135	that the other volcanic forcing dataset that NASA explored in their suite of simulations
136	(Crowley and Unterman, 2013) only provides data over four latitude bands, complicating
137	inferences concerning hemispheric asymmetry. The three GISS-E2 members also differ
138	in the combination of transient solar/land-use histories employed, but since our analysis
139	focuses only on the immediate post-volcanic imprint, the impact of these smaller
140	amplitude and slowly varying forcings is very small. Taken together, there are 18,000
141	years of simulation time in which to explore the post-volcanic response while probing
142	both initial condition sensitivity and the structural uncertainty between two different
143	models.
144	In both GISS-E2 and CESM, the model response is a slave to the spatial
145	distribution of the imposed radiative forcing, which was based on the aerosol transport
146	model of G08, rather than the coupled model stratospheric wind field, thus losing
147	potential insight into the seasonal dependence of the response that may arise in the real
148	world. For our purpose, however, this is a more appropriate experimental setup, since the
149	spatial structure of the forcing is implicitly known (Figure 1).

150	In CESM, aerosols are treated as a fixed size distribution in three levels of the
151	stratosphere, which provide a radiative effect, including shortwave scattering and
152	longwave absorption. The GISS-E2 model is forced with prescribed Aerosol Optical
153	Depth (AOD) from 15-35 km, based on a linear scaling with the G08-derived column
154	volcanic aerosol mass (Stothers, 1984; Schmidt et al., 2011), with a size distribution as a
155	function of AOD as in Sato et al (1993) – thus altering the relative long wave and
156	shortwave forcing (Lacis et al, 1992; Lacis, 2015). The stratospheric sulfate
157	aerosol loadings given by G08 are a function of latitude, altitude and month.
158	We note that the GISS-E2 runs forced with the G08 reconstruction in
159	CMIP5/PMIP3 were mis-scaled to give approximately twice the appropriate AOD
160	forcing, although the spatial structure of forcing in the model is still coherent with G08.
161	For this reason, we emphasize the CESM results in this study. However, we still choose
162	to examine the results from the GISS-E2 model for two reasons. First, we view this error
163	as an opportunity to explore the climate response to a wider range of hemispheric forcing
164	gradients, even though it comes at the expense of not being able to relate the results to
165	actual events during the LM. Secondly, the GISS-E2 LM runs were equipped with
166	interactive water isotopes (section 3.3). A self-consistent simulation of the isotope field in
167	a GCM is important, since it removes a degree of uncertainty in the error-prone
168	conversion of isotopic signals into more fundamental climate variables. To our
169	knowledge, an explicit simulation of the isotopic distribution following asymmetries in
170	volcanic forcing has not previously been reported.
171	In our analysis, we classify volcanic events as "symmetric" (SYMM), and
172	"asymmetric" (ASYMM _{X}), where the subscript X refers to a preferred forcing in the

173	Northern Hemisphere (NH) or Southern Hemisphere (SH). Composites are formed from
174	all events within each of the three classifications in order to isolate the volcanic signal.
175	All events must have a global aerosol loading > 8 Tg (1 teragram = 10^{12} g) averaged
176	over at least one five-month period to qualify as an eruption and enter the composite.
177	Events fall into the SYMM category if they have less than a 25% difference in aerosol
178	loading between hemispheres, while the $ASYMM_{NH}$ events have an at least 25% higher
179	loading in the NH relative to the SH. The opposite applies to events falling into the
180	$\mathrm{ASYMM}_{\mathrm{SH}}$ category. The dates for which these thresholds are satisfied are taken from
181	the original G08 dataset (Table 1), and thus the CESM and GISS-E2 composites are
182	formed using the same events despite the GISS-E2 mis-scaling and other differences in
183	model implementation.
184	Results are reported for the boreal warm season (averaged over the MJJAS
185	months) and cold season (NDJFM). For each eruption, we identify the post-volcanic
186	response by averaging the number of consecutive seasons during which the above criteria
187	are met, typically 1-3 years. All seasons for an eruption lasting more than one year are
188	first averaged together to avoid over-weighting its influence in the composite. We use the
189	previous five seasons as a reference period to calculate an anomaly for each event. For
190	overlapping eruptions, the five years prior to the first eruption are used instead. This
191	relatively short reference period allows creating composites that are unaffected by
192	changes in the mean background state due to low-frequency climate change during the
193	LM. Composites for the SYMM, ASYMM $_{\rm NH}$, and ASYMM $_{\rm SH}$ cases are then obtained for
194	each season and model by averaging over all anomaly fields within the appropriate
195	classification, including all ensemble members. A two-sided Student's t-test was applied

- to all composites in order to identify regions where the anomalous signal is significantly
- 197 different (p < 0.05) from the mean background conditions.
- 198 In no case does the classification of a given eruption change over the duration of
- the event, with the exception of the largest eruption (Samalas, 1258 C.E.), which
- straddles the 25% asymmetry criterion throughout the years following the event. This
- 201 eruption would project itself most strongly onto the symmetric results but may reasonably
- 202 be classified as ASYMM_{NH} due to the greater absolute aerosol loadings in the NH. Due to
- this ambiguity, we omit the Samalas event from our main results. We note that there are
- 204 far more asymmetric eruptions during the LM based on our criteria than SYMM cases,
- 205 most of which easily meet the two thresholds outlined above. Because of this, the
- 206 classification assigned to each event is quite robust to slightly different criteria in
- 207 defining the ratio (or differences) in hemispheric aerosol loading. Since the asymmetric
- 208 composites are formed from a relatively large number of events, our results are
- 209 insensitive to the addition or removal of individual eruptions that may be more
- ambiguous in their degree of asymmetry. However, the SYMM composites are formed
- 211 from only a few events, and are therefore more sensitive to each of the individual
- eruptions that are included.

We stress that in this study we are agnostic concerning the actual location of individual LM eruptions. Although aerosols from high-latitude eruptions tend to be confined to the hemisphere in which the eruption occurs, tropical eruptions may also lead to an asymmetric aerosol forcing, as happened during the eruptions of El Chichón and Mt. Agung during the historical period. The G08 reconstructions used a simple transport model that does not allow for cross-equatorial aerosol transport, and the inferred

219	asymmetry may not be coherent with other reconstructions (e.g., the Tambora eruption in
220	1815 features more aerosols in the SH than in the NH in the Crowley and Unterman
221	(2013) reconstruction, which is not the case in G08). The timing and magnitude of LM
222	eruptions is an important topic of research (see e.g., updates from Sigl et al., 2015), but
223	our composite should strictly be interpreted as a self-consistent response to the imposed
224	forcing in the model.
225	Similar approaches of stratifying volcanic events during the LM have only begun
226	to emerge in the literature (e.g., Liu et al., 2016). Iles and Hegerl (2015) showed the
227	CMIP5 multi-model mean precipitation response to a few post-1850 eruptions,
228	emphasizing the spatial structure of the aerosols (see their supplementary S14) but noted
229	that it would be desirable for a greater sample of events in order to group by the location
230	of the aerosol cloud. The LM provides an appropriate setting for this. Additionally, we
231	add to these results by presenting a simulation of the water isotope distribution following
232	different volcanic excursions. We emphasize that we are screening events by spatial
233	structure and since different magnitude eruptions enter into the different composites, a
234	quantitative comparison of the different event classifications (or the two models) is not
235	our primary objective and would require a more controlled experiment. Instead, we are
236	reporting on the different composite responses as they exist in current LM simulations,
237	and highlight the emergent structure that arises from different choices in how eruptions
238	are sorted, much of which is shown to be scalable to different eruption sizes and robust to
239	choices of model implementation.
240	

241 **3. Results**

242

243	3.1) Temperature, Precipitation and ENSO response
244	
245	Figure 2 illustrates the composite temperature anomaly for each classification and
246	season in the CESM model. In both the ASYMM_{NH} and ASYMM_{SH} cases, the
247	hemisphere that is subjected to the strongest forcing is preferentially cooled. In the
248	$\operatorname{ASYMM}_{NH}$ and SYMM results, the cooling peaks over the Eurasian and North American
249	continents. As expected, there tends to be a much larger response over land, as well as
250	evidence of NH winter warming in the mid-latitudes, a phenomenon previously
251	highlighted in the literature and often associated with increased (decreased) pole-to-
252	equator stratospheric (mid-tropospheric) temperature gradients (Figure S1) and a positive
253	mode of the Arctic/North Atlantic Oscillation (Robock and Mao, 1992, 1995;
254	Stenchikov et al., 2002; Shindell et al., 2004; Ortega et al., 2015). This effect is weak in
255	the ASYMM $_{\rm NH}$ composite, likely because the maximal radiative forcing is located in the
256	NH, offsetting any dynamical response, and is present in the SYMM and ASYMM_{SH}
257	composites in both models (see Figure S2 for the GISS-E2 composite).
258	In the SH, cooling is muted by larger heat capacity associated with smaller land
259	fraction, with weak responses over the Southern Ocean while still exhibiting statistically
260	significant cooling in South America, South Africa, and Australia in all cases. In fact, the
261	cooling in the $\mathrm{ASYMM}_{\mathrm{SH}}$ composites is largely confined to the tropics, in contrast to the
262	polar amplified pattern that is common to most climate change experiments. The cooling
263	in all categories is communicated vertically (Figure S1) and across the free tropical

- troposphere, suggesting AET away from the forced hemisphere (section 3.4) for
- asymmetric forcing.

266	The cooling in the GISS-E2 model (Figure S2), displays a very similar spatial
267	structure to CESM in all categories but with much greater amplitude due to the larger
268	forcing. We note that the composite-mean forcing that these results are consistent with, is
269	similar between the four asymmetric panels, but larger in the symmetric cases. In Figure
270	3, we show the hemispheric and global average temperature response for both models
271	after normalizing each event by a common global aerosol mass excursion, thereby
272	accounting for differences in the average forcing among the different eruptions. The
273	gross features of the hemispheric contrast and reduction in global-mean temperature are
274	shared between both models.
275	The CESM precipitation response is shown in Figure 4 (Figure S3 for GISS-E2).
276	For both the ASYMM $_{\rm NH}$ and ASYMM $_{\rm SH}$ cases, the ITCZ shows a robust displacement
277	away from the forced hemisphere. The precipitation reduction in the SYMM composites
278	is much less zonally coherent, instead featuring tropical-mean reductions in precipitation
279	and a slight increase toward the subtropics (see also Iles et al., 2013; Iles and Hegerl,
280	2014). Despite global cooling and reduced global evaporation (not shown), the ITCZ shift
281	in ASYMM_{NH} and ASYMM_{SH} may result in precipitation increases in the hemisphere
282	that is least forced (Figure 5), since the precipitation signal is strongest moving with the
283	ITCZ and because the area-weighted averages emphasize the tropics more than higher
284	latitudes.
285	The ensemble spread in precipitation for a selected eruption (1762 C.E., NDJFM)

286 is shown in Figure S4, corresponding to the Icelandic Laki aerosol loading (a large

287	ASYMM _{NH} event). We note that the Laki eruption in Iceland actually occurred in 1783
288	C.E., but is earlier in our composite due to an alignment error in the first version of the
289	G08 dataset. Results are shown for the 1763 C.E. boreal winter only (the full composite
290	also includes 1762, see Table 1; Figure S4 also reports the winter 1763 Niño 3.4 anomaly
291	in surface temperature for each ensemble member, and therefore we restrict the
292	anomalous precipitation field to a single season). The ITCZ shift away from the NH is
293	fairly robust across the ensemble members, particularly in the Atlantic basin, although
294	internal variability still leads to large differences in the spatial pattern of precipitation,
295	notably in the central and eastern Pacific.
296	The monthly time-evolution of the composite temperature and precipitation
297	responses for the $\mathrm{ASYMM}_{\mathrm{NH}}$ and $\mathrm{ASMM}_{\mathrm{SH}}$ cases can be viewed in an animation. The
298	global and hemispheric difference in aerosol loadings is also shown for each monthly
299	timestep. When averaged over the individual eruptions within each classification, the
300	global aerosol mass loading remains elevated above 8 Tg for nearly two years, coincident
301	with the peak temperature and precipitation response that begin to dampen out gradually.
302	The seasonal migration the monthly precipitation anomaly occurs in nearly the same
303	sense as the meridional movement in climatological rainfall.
304	In both CESM and GISS-E2, the ITCZ shift is approximately scalable to eruption
305	size. For both models, we define a precipitation asymmetry index, PAi (Hwang and
306	Frierson, 2013) in each season as the area-weighted NH tropical precipitation minus SH
307	tropical precipitation (extending to 20° latitude) normalized by the model tropical-mean
308	precipitation, i.e.,
309	

$PAi = \frac{P_{EQ-20^{\circ}N} - P_{20^{\circ}S-EQ}}{P_{20^{\circ}S-20^{\circ}N}} \quad (1)$

310

311	Supplementary Figure S5 illustrates the relationship between PAi and the AOD
312	gradient between hemispheres (AOD is inferred for the CESM model by dividing the
313	aerosol loading by 75 Tg in each hemisphere, an approximate conversion factor to
314	compare the results with GISS-E2). The mis-scaling in GISS-E2 results in a wider range
315	of AOD gradients than occurs in CESM. Both models feature more tropical precipitation
316	in the NH (SH) during boreal summer (winter) in their climatology, with more
317	asymmetry in CESM during boreal summer. Interestingly, the most asymmetric events in
318	GISS-E2 (those that result in equatorward precipitation movements) can be sufficient to
319	produce more precipitation in the tropical winter hemisphere, thus competing with the
320	seasonal insolation cycle in determining the seasonal precipitation distribution.
321	The meridional ITCZ shift leads to a number of important tropical climate
322	responses. For example, an intriguing feature of the temperature pattern in Figure 2 is the
323	El Niño response that is unique to the $\operatorname{ASYMM}_{NH}$ composites. This is unlikely to be a
324	residual feature of unforced variability, since there are 240 events in the $\mathrm{ASYMM}_{\mathrm{NH}}$
325	composites (eruptions in Table 1, multiplied by 15 ensemble members), significantly
326	more than in the other categories. The GISS-E2 temperature composite (Fig. S2) also
327	features a relatively weak cooling for $ASYMM_{NH}$, despite the very large radiative
328	forcing. This finding is consistent with recent results (Pausata et al., 2015) that found an
329	El Niño tendency to arise from a Laki-like forcing (in that study, a sequence of aerosol
330	pulses in the high latitudes that was confined to the NH extratropics). Pausata et al.
331	(2015) attributed the El Niño development directly to a southward ITCZ displacement.

332	Since low-level converging winds are weak in the vicinity of the ITCZ, a southward
333	ITCZ displacement leads to weaker easterly winds (a westerly anomaly) across the
334	central equatorial Pacific. This was shown for a different model (NorESM1-M) and
335	experimental setup, but also emerges in the $\mathrm{ASYMM}_{\mathrm{NH}}$ composite results for CESM.
336	Indeed, a composite anomaly of $\sim 0.5^{\circ}$ C emerges over the Niño 3.4 domain, lasting up to
337	two years (Figure S6) with peak anomalies in the first two boreal winters after an
338	eruption. In addition a relaxation of the zonal winds and re-distribution of water mass
339	across the Pacific Ocean can be observed in the $\ensuremath{ASYMM_{NH}}$ composite response (Figure
340	S7).
341	Since the ITCZ shift is a consequence of differential aerosol loading, we argue
342	that the El Niño tendency in CESM is a forced response in $\ensuremath{ASYMM_{NH}}\xspace$ but otherwise
343	depends on the state of internal variability concurrent with a given eruption. This explains
344	why no such ENSO response is associated with the composite SYMM or ASYMM_{SH}
345	categories, although we note that El Niño does tend to develop in response to the Samalas
346	eruption that was removed from our composite, and would strongly influence the
347	interpretation of the SYMM results due to the few events sampled (not shown). However,
348	we also caution that this version of CESM exhibits ENSO amplitudes much larger than
349	observations, and also features strong El Niño events with amplitudes that are ~ 2 times
350	larger than strong La Niña events even in non-eruption years. Therefore, we choose not to
351	further explore the dependence of our results on ENSO phasing.
352	
353	3.2) <i>River outflow</i>

354

355	An ITCZ shift away from the forced hemisphere will manifest itself in several
356	other components of the tropical hydroclimate system that are important to consider from
357	the standpoint of both impacts as well as the development of testable predictions. One
358	such important component of the hydrologic cycle is global streamflow, a variable that
359	tends to correlate with excessive or deficient precipitation over a catchment. Rivers are
360	important for ecosystem integrity, agriculture, industry, power generation, and human
361	consumption. Streamflow anomalies associated with volcanic forcing in observations and
362	models have previously been documented for the historical period (Trenberth and Dai,
363	2007; Iles and Hegerl, 2015), and are a useful variable in the context of monitoring since
364	they integrate precipitation changes over time. Here, we discuss this variable in the
365	context of our symmetric and asymmetric composites.
366	The hydrology module of the land-component of CESM simulates surface and
367	subsurface fluxes of water, which serve as input into the CESM River Transport Model
368	(RTM). The RTM was developed to route river runoff downstream to the ocean or
369	marginal seas and enable closure of the hydrologic cycle (Oleson et al., 2010). The RTM
370	is run on a finer grid $(0.5^{\circ} \times 0.5^{\circ})$ than the atmospheric component of CESM.
371	Figure 6 shows the river discharge anomalies in our different forcing categories.
372	The southward ITCZ shift in $ASYMM_{NH}$ results in enhanced discharge in central and
373	southern South America, especially in the southern Amazon and Parana River networks.
374	These territories of South America, along with southern Africa and Australia are the
375	primary regions where land precipitation increases in the tropics for $\operatorname{ASYMM}_{NH}$, and the
376	river flow in these areas tends to increase. Our results are also consistent with Oman et al.
377	(2006), who argue for a reduced Nile River level (northeastern Africa) following several

378	large high northern latitude eruptions, including Laki and the Katmai (1912 C.E.)
379	eruption. Their results were viewed through the lens of weakened African and Indian
380	monsoons associated with reduced land-ocean temperature differences; our composite
381	results suggest that regional precipitation reductions may also be part of a zonally
382	coherent precipitation shift.
383	In ASYMM _{SH} , the ITCZ moves northward, resulting in reduced river flux in the
384	Amazon sector and increases in the Niger of central/western Africa. Interestingly, the
385	Nile flow is also reduced in this case, although to a lesser extent, despite very modest
386	precipitation increases during MJJAS for a southern hemisphere biased aerosol forcing.
387	There are also modest discharge increases in southern Asia. However, there is simply
388	very little land in regions where northward ITCZ shifts result in enhanced precipitation,
389	suggesting less opportunity for increases in discharge to a SH biased eruption. For the
390	SYMM eruptions, river discharge is reduced nearly everywhere in the tropics, consistent
391	with the precipitation reductions that occur (Figure 3). The response is weaker or even
392	reversed in the subtropics, such as in southern South America, where precipitation tends
393	to increase (Iles and Hegerl, 2015).
394	

3.3) Water isotopic variability 395

396

397 Another important variable that integrates several aspects of the tropical climate 398 system is the isotopic composition of precipitation. Here, we focus on the relative abundance of ${}^{1}\text{H}_{2}{}^{18}\text{O}$ versus the more abundant ${}^{1}\text{H}_{2}{}^{16}\text{O}$, commonly expressed as $\delta^{18}\text{O}$, 399 400 such that:

401

$$\delta^{18} O_p \equiv \left\{ VSMOW^{-1} \frac{O_{mp}^{18}}{O_{mp}^{16}} - 1 \right\} \times 1000 \quad (2)$$

402

403 where O_{mp}^{18} and O_{mp}^{16} are the moles of oxygen isotope in a sample, in our case

404 precipitation (denoted by the subscript mp). Delta values are with respect to the isotopic

405 ratio in a standard sample, the Vienna Standard Mean Ocean Water (VSMOW=

406
$$2.005 \times 10^{-3}$$
)

407 $\delta^{18}O_p$ is a variable that is directly obtained from many paleoclimate proxy

408 records. Therefore, rather than relying on a conversion of the local isotope signal to some

409 climate variable, the explicit simulation of isotopic variability is preferred for generating

410 potentially falsifiable predictions concerning the imprint associated with asymmetric

411 volcanic eruptions. Indeed, $\delta^{18}O_p$ variability is the result of an interaction between

412 multiple scales of motion in the atmosphere, the temperature of air in which the

413 condensate was embedded, and exchange processes operating from source to sink of the

414 parcel deposited at a site.

Water isotope tracers have been incorporated into the GISS-E2 model's atmosphere, land surface, sea ice and ocean, and are advected and tracked through every stage of the hydrologic cycle. A fractionation factor is applied at each phase change and all freshwater fluxes are tagged isotopically. Stable isotope results from the lineage of GISS-E2 models have a long history of being tested against observations and proxy records (e.g., Vuille et al., 2003; Schmidt et al., 2007; LeGrande and Schmidt, 2008, 2009).

422	Figure 7 shows the $\delta^{18}O_p$ response in the GISS-E2 model. Seasonal calculations
423	are weighted by the precipitation amount for each month, although changes in the
424	seasonality of precipitation are not important in driving our results (not shown). The
425	literature on mechanistic explanations for isotope variability has a rich history of being
426	described by several "effects" such as a precipitation amount effect in deep convective
427	regions or a temperature effect at high latitudes (Dansgaard, 1964; Araguás-Araguás et
428	al., 2000), so named as to reflect the most important climatic driver of isotopic variability
429	at a site or climate regime. However, the isotopic response to volcanic eruptions is more
430	complex than simply a response to one of these effects. The $\delta^{18}O_p$ spatial pattern in the
431	tropics is negatively correlated with precipitation changes induced by the ITCZ shift
432	(Figure S5 for GISS-E2), particularly over the ocean. The meridional movement of the
433	ITCZ leads to an isotopic signal that is more positive (enriched in heavy isotopes) in the
434	preferentially forced hemisphere. The hemisphere toward which the ITCZ is displaced on
435	the other hand experiences increased tropical rainfall and a relative depletion of the heavy
436	isotope (more negative $\delta^{18}O_p$). Thus, the paleoclimatic fingerprint of asymmetric
437	volcanic eruptions is characterized by a tropical dipole pattern, with more positive
438	(negative) $\delta^{18}O_p$ associated with reduced (increased) rainfall.
439	Over land, South America stands out as exhibiting a palette of isotopic patterns
440	depending on forcing category and season. The South American monsoon system peaks
441	in austral summer, and the largest precipitation reductions occur in $\mathrm{ASYMM}_{\mathrm{SH}}$ when the
442	ITCZ moves northward. There is a dipole pattern, characterized by isotopic enrichment
443	(depletion) in $^{18}\mathrm{O}$ in the northern (southern) tropics of South America in ASYMM_{NH}
444	during NDJFM, while the opposite pattern emerges in $\mathrm{ASYMM}_{\mathrm{SH}}$, both associated with

466

445	Atlantic and east Pacific ITCZ displacements. During the austral winter, South American
446	precipitation peaks in the northern part of the continent where precipitation is reduced in
447	both the SYMM and ASYMM _{SH} composites, leading to large increase in $\delta^{18}O_p$. This is
448	consistent with recent results in Colose et al. (2016), who used the isotope-enabled GISS-
449	E2 model to form a composite of all large (AOD > 0.1) LM tropical volcanic events
450	based on the Crowley and Unterman (2013) dataset. The eruptions analyzed in that study
451	were smaller in amplitude due to differences in the scaling during implementation, as
452	well as the fact that G08 tends to have larger volcanic events in the original dataset to
453	begin with. In regions where tropical South American precipitation does not exhibit very
454	large changes, such in the NDJFM SYMM composites, temperature may explain much of
455	the isotopic response, again consistent with findings in Colose et al. (2016).
456	
457	3.4) Atmospheric Energetics
458	
459	The overarching purpose of this work was to consider the influence of asymmetric
460	volcanic forcing on the energetic paradigm outlined in section 1. This framework of
461	analyzing ITCZ shifts in the context of asymmetric forcing predicts a net AET anomaly
462	toward the hemisphere that is preferentially forced by explosive volcanism, with anti-
463	correlated dry and latent energy fluxes both contributing to drive the ITCZ away from the
464	
	forced hemisphere. To examine this relationship in CESM, we first write a zonal-mean
465	forced hemisphere. To examine this relationship in CESM, we first write a zonal-mean energy budget for the atmosphere:

$$\frac{1}{2\pi a^{2} cos\phi} \frac{\partial AET}{\partial \phi}$$

$$= ASR_{TOA} - OLR_{TOA} + SW_{sfc}^{\uparrow} - SW_{sfc}^{\downarrow} + LW_{sfc}^{\uparrow} - LW_{sfc}^{\downarrow} + LH_{sfc}$$

$$+ SH_{sfc} + L_{f}Sn - \frac{1}{g} \int_{0}^{p_{s}} \frac{\partial (c_{p}T + L_{v}q + k)}{\partial t} dp \qquad (3)$$

467

468 where ASR_{TOA} is the absorbed solar radiation, OLR_{TOA} is outgoing longwave radiation at the top of the atmosphere (TOA), SW_{sfc}^{\downarrow} is reflected surface shortwave 469 radiation, SW_{sfc}^{\uparrow} is shortwave received by the surface (sfc), LW_{sfc}^{\uparrow} is longwave radiation 470 emitted (or reflected) by the surface, LW_{sfc}^{\downarrow} is longwave radiation received by the surface, 471 472 LH is the latent heat flux, SH is the sensible heat flux, Sn is snowfall rate, q is specific 473 humidity, k is kinetic energy, ϕ is latitude, a is the radius of the Earth, T is temperature, 474 c_p is specific heat capacity, L_p and L_f are the latent heats of vaporization and fusion, p is 475 pressure ($p=p_s$ at the surface), and g is the acceleration due to gravity. All terms are defined positive into the atmosphere, and the subscripts denote top-of-atmosphere (TOA) 476 477 or surface flux (sfc) diagnostics. Equation 3 effectively calculates MSE transport (section 1) as a residual of energy fluxes in the model. 478 The last term $\left(\frac{\partial}{\partial t}\right)$ on the right side of equation 3 is the time-tendency term, 479 480 representing storage of energy in the atmosphere (hereafter, STOR_L and STOR_D for latent

and dry energy, respectively. The time-derivative is calculated using finite differencing of
the monthly-mean fields. The term in the parentheses is the moist enthalpy, or MSE
minus geopotential energy. The kinetic energy is calculated in this study but is several

484 orders of magnitude smaller than other terms, and hereafter is folded into the definition of

- 485 STOR_D). The tendency term must vanish on timescales of several years or longer, but is
- 486 important in our context. We explicitly write out the snowfall term since CESM (and any
- 487 CMIP5 model) does not include surface energy changes associated with snow melt over
- 488 the ice-free ocean as part of the latent heat diagnostic, and must be calculated to close the
- 489 model energy budget.
- 490 Integrating yields an expression for the atmospheric heat transport across a
- 491 latitude circle:
- 492

$$AET(\phi) = 2\pi a^2 \int_{-\frac{\pi}{2}}^{\phi} \left(R_{TOA} + F_{sfc} - STOR_L - STOR_D \right) \cos\phi \, d\phi \quad (4)$$

493 where we have combined the TOA terms into R_{TOA} and the snowfall and surface 494 diagnostics have collapsed into a single variable F_{sfc} . Similarly, the latent heat flux \mathcal{H}_L 495 across a latitude circle is:

$$\mathcal{H}_{L}(\phi) = 2\pi a^{2} \int_{-\frac{\pi}{2}}^{\phi} \left(LH_{sfc} - L_{v}P - STOR_{L} \right) \cos\phi \, d\phi \quad (5)$$

496 where *P* is precipitation in kg m⁻² s⁻¹. We note that transport calculations are 497 presented for CESM and were done for only 14 ensemble members, since there are 498 missing output files for the requisite diagnostics in one run.

- Figure 8a shows the annual-mean climatological northward heat transport inCESM, as performed by both the atmosphere and ocean, in addition to the latent
- 501 component of the atmosphere. The total CESM climatological poleward transport is in
- 502 good agreement with observational estimates (e.g., Trenberth and Caron, 2001; Wunsch,
- 503 2005; Fasullo and Trenberth, 2008), peaking at ~5.0 PW and ~5.2 PW in the SH and NH

504	subtropics, respectively (1 petawatt = 10^{15} W). In CESM, the SH receives slightly more
505	net TOA solar radiation than the NH (by ~ 1.3 W m ⁻² in the annual-mean), and the NH
506	loses slightly more net TOA longwave radiation to space (by ~0.89 W m ⁻²). However, the
507	CESM annual ocean heat transport is northward across the equator (Figure 8a, blue line),
508	keeping the NH warmer than the SH by ~0.97 °C. As a consequence, AET is directed
509	southward across the equator (red line). Moisture makes it more difficult for the tropical
510	circulation to transport energy poleward, and the transport of moisture in the low-level
511	equatorward flow is directed northward across the equator and associated with an annual-
512	mean ITCZ approximately co-located with the atmospheric energy flux equator (EFE),
513	the latitude where AET vanishes. This arrangement of the tropical climate is consistent
514	with satellite and reanalysis results for the present climate (Kang and Seager, 2012;
515	Frierson et al., 2013).
516	In response to asymmetric volcanic forcing, anomalous AET is directed toward
510	In response to asymmetric volcanic forcing, anomalous AET is unected toward
517	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature
517	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature
517 518	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature gradient. Results are shown for the annual-mean AET anomaly in $ASYMM_{NH}$ and
517 518 519	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature gradient. Results are shown for the annual-mean AET anomaly in ASYMM _{NH} and ASYMM _{SH} for one year beginning with the January after each eruption, although
517 518 519 520	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature gradient. Results are shown for the annual-mean AET anomaly in ASYMM _{NH} and ASYMM _{SH} for one year beginning with the January after each eruption, although averaging the first 2-3 years yields similar results with slightly smaller amplitudes. The
517 518 519 520 521	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature gradient. Results are shown for the annual-mean AET anomaly in ASYMM _{NH} and ASYMM _{SH} for one year beginning with the January after each eruption, although averaging the first 2-3 years yields similar results with slightly smaller amplitudes. The equatorial AET (AET _{eq}) anomaly averaged over all events and ensemble members for
517 518 519 520 521 522	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature gradient. Results are shown for the annual-mean AET anomaly in ASYMM _{NH} and ASYMM _{SH} for one year beginning with the January after each eruption, although averaging the first 2-3 years yields similar results with slightly smaller amplitudes. The equatorial AET (AET _{eq}) anomaly averaged over all events and ensemble members for ASYMM _{NH} (ASYMM _{SH}) is approximately 0.08 (-0.05) PW, defined positive northward,
517 518 519 520 521 522 523	the preferentially forced hemisphere (Figure 8b,c), along the imposed temperature gradient. Results are shown for the annual-mean AET anomaly in ASYMM _{NH} and ASYMM _{SH} for one year beginning with the January after each eruption, although averaging the first 2-3 years yields similar results with slightly smaller amplitudes. The equatorial AET (AET _{eq}) anomaly averaged over all events and ensemble members for ASYMM _{NH} (ASYMM _{SH}) is approximately 0.08 (-0.05) PW, defined positive northward, with much larger near-compensating dry and latent components. The anomalous moisture

- 526 ensemble members) are strongly anti-correlated with changes in the energy flux equator
- 527 (r = -0.97), the latitude where AET vanishes.
- 528 The change in cross-equatorial energy transport for the SYMM ensemble/eruption
- 529 mean (not shown) does not exhibit the coherence of the asymmetric cases for either AET
- 530 or the individual dry and moist components, and in all cases does not emerge from
- 531 background internal variability.
- 532 Quantifying the ITCZ shift is non-trivial, since the precipitation field is less
- sharply defined than the EFE, and climate models (including the two discussed here)
- exhibit a bimodal tropical precipitation distribution (often called a "double-ITCZ"), often
- 535 with one mode of higher amplitude in the NH (centered at 8-9 °N in CESM). However,
- 536 despite pervasive biases that still exist in the climatology of tropical precipitation in
- 537 CMIP5 (e.g., Oueslati and Bellon, 2015), the anomalous precipitation response is still
- 538 coherent and the gross features presented here are in agreement with theoretical
- 539 considerations. In our analysis, a movement in the latitude of maximum precipitation is
- 540 not found to be a persuasive indicator of our ITCZ shift. In fact, the meridional shift is
- 541 better described as a movement in the center of mass of the precipitation distribution,
- 542 including changes in the relative amplitude of the two modes (e.g., a heightening of the
- 543 SH mode for a southward ITCZ shift). Different metrics to describe the shift in the center
- of mass have been presented in the literature (e.g., Frierson and Hwang, 2012; Donohoe
- 545 et al., 2013; Adam et al., 2016, in press).
- Here, we first adopt the precipitation median ϕ_{med} definition (e.g., Frierson and Hwang, 2012) defined as the latitude where area-weighted precipitation from 20°S to

- 548 ϕ_{med} equals the precipitation amount from ϕ_{med} to 20°N, i.e., where the following is
- 549 satisfied:

550

$$\int_{20^{\circ}S}^{\phi_{med}} P\cos(\phi) \, d\phi = \int_{\phi_{med}}^{20^{\circ}N} P\cos(\phi) \, d\phi$$
(6)

551

552 When considering the spread across eruption size (regressing the different events 553 in all three categories together after averaging over ensemble members) we find a 554 movement of \sim -4.7° shift in ITCZ latitude per 1 PW of anomalous AET_{eq}. The sign of 555 this relationship is a robust property of the present climate system, although it is slightly 556 higher than other estimates (Donohoe et al., 2013) that analyzed the ITCZ scaling with 557 AET_{eq} to a number of other time periods and forcing mechanisms (not volcanic), including the seasonal cycle, CO2 doubling, Last Glacial Maximum, and mid-Holocene. 558 559 It was argued in that paper that the ITCZ is "stiff" in the sense that a large AET_{eq} is 560 required to move the ITCZ. However, the sensitivity of this relationship may vary 561 considerably depending on ITCZ metric considered (Figure 9 presents a scaling with 562 different indices), based on the following equation (Adam et al., 2016, in press): 563

$$\phi_{\rm ITCZ} = \frac{\int_{20^{\circ}\rm S}^{20^{\circ}\rm N} \phi \left(P \cos(\phi) \right)^{\rm N} d\phi}{\int_{20^{\circ}\rm S}^{20^{\circ}\rm N} \left(P \cos(\phi) \right)^{\rm N} d\phi}$$
(7)

564

Here, *N* controls the weighting given to the modes in the precipitation distribution, typically moving ϕ_{ITCZ} toward the precipitation maximum as *N* increases but

567	also changing the sensitivity	of the ITCZ shift to external a	forcing. Figure 9 shows the

- regression of anomalous ϕ_{med} and ϕ_{ITCZ} (N = 5) against anomalous AET_{eq}. (N = 5 with
- 569 r= -0.93) while ϕ_{ITCZ} (N = 3) yielded the highest correlation (r = -0.95) and best follows
- 570 a 1:1 line with the EFE. The slope of the relationship between ITCZ location and AET_{eq}
- 571 may vary by a factor of 4-5 depending on the relationship used, and in our case is
- approximately -11.7° shift in ITCZ latitude per 1 PW of anomalous AET_{eq} using
- 573 ϕ_{ITCZ} (N = 3). Thus, we interpret our results as suggesting that energetically, it is quite
- easy to move the ITCZ. Therefore, probing uncertainties in the spatial structure in forcing

575 must be of first-order consideration for credible paleoclimate simulations.

576

577 4. Conclusions

578

In this work, we have examined two models, NASA GISS ModelE2-R and the recently completed CESM Last Millennium Ensemble, and stratified volcanic events by their degree of asymmetry between hemispheres. We find a robust ITCZ shift away from the preferentially forced hemisphere, as a consequence of adjustments in the Hadley circulation that transports anomalous energy into the cooled hemisphere.

An important component of our work was using the GISS-E2 model to explicitly simulate the oxygen isotopic imprint following major volcanic eruptions with asymmetric aerosol forcing. The ITCZ shift following asymmetric forcing leads to a more positive isotopic signal in the tropical regions the ITCZ migrates away from, and a relative depletion in heavy isotopes in regions the ITCZ migrates to. These results provide a

589 framework for the search of asymmetric volcanic signals in high-resolution isotopic or

590	other temperature and precipitation sensitive proxy data from the tropics.
591	There is still considerably uncertainty in the timing and magnitude of LM
592	eruptions. Improvements in particle size representation have been identified as critical
593	target for improved modeling and comparisons to proxy data (e.g., G. Mann et al., 2015).
594	Here, we argue that the inter-hemispheric asymmetry of the aerosol forcing also emerges
595	as being of first-order importance for the expected volcanic response. Future
596	developments in model-proxy comparisons should probe the uncertainty space not just in
597	the global-mean radiative forcing and coincident internal variability at the time of the
598	eruption, but also the spatial structure of the aerosol cloud. For example, simulations that
599	represent volcanic forcing simply as an equivalent reduction in total solar irradiance at
600	the TOA are unrealistic and cannot be expected to be faithful to tropical climate proxy
601	records.
602	We hope this contribution will help motivate the connection between the spatial
	we hope this contribution will help motivate the connection between the spatial
603	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent
603 604	
	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent
604	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent paleoclimate target in future studies and model intercomparisons. Such investigation also
604 605	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent paleoclimate target in future studies and model intercomparisons. Such investigation also calls for high-resolution and accurately dated tropical proxy networks that reach across
604 605 606	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent paleoclimate target in future studies and model intercomparisons. Such investigation also calls for high-resolution and accurately dated tropical proxy networks that reach across hemispheres. Developments in seasonally and annually resolved volcanic reconstructions
604 605 606 607	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent paleoclimate target in future studies and model intercomparisons. Such investigation also calls for high-resolution and accurately dated tropical proxy networks that reach across hemispheres. Developments in seasonally and annually resolved volcanic reconstructions from both hemispheres (Sigl et al., 2015) are of considerable importance in such
604 605 606 607 608	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent paleoclimate target in future studies and model intercomparisons. Such investigation also calls for high-resolution and accurately dated tropical proxy networks that reach across hemispheres. Developments in seasonally and annually resolved volcanic reconstructions from both hemispheres (Sigl et al., 2015) are of considerable importance in such assessments. Future modeling efforts that are forced with the explicit injection of
604 605 606 607 608 609	structure of volcanic episodes and the expression on tropical hydroclimate as an urgent paleoclimate target in future studies and model intercomparisons. Such investigation also calls for high-resolution and accurately dated tropical proxy networks that reach across hemispheres. Developments in seasonally and annually resolved volcanic reconstructions from both hemispheres (Sigl et al., 2015) are of considerable importance in such assessments. Future modeling efforts that are forced with the explicit injection of volcanic species, while also probing multiple realizations of internal variability that will

612

613

614 Acknowledgments

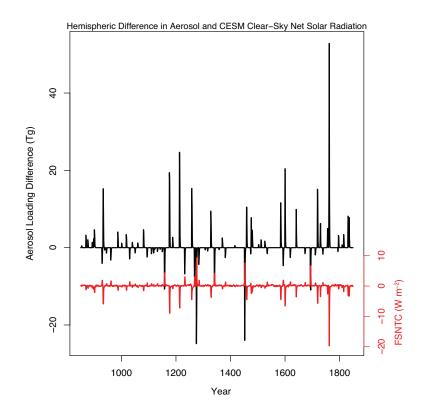
- This study was funded by NOAA C2D2 NA10OAR4310126 and NSF awards AGS-
- 616 1003690 and AGS-1303828. We would like to thank NASA GISS-E2 for institutional
- 617 support. Computing resources supporting this work were provided by the NASA High-
- 618 End Computing (HEC) Program through the NASA Center for Climate Simulation
- 619 (NCCS) at Goddard Space Flight Center. We acknowledge the CESM1(CAM5) Last
- 620 Millennium Ensemble Community Project and supercomputing resources provided by
- 621 NSF/CISL/Yellowstone.

623	Figure	Captions
040	I Igui C	captions

- 624 Figure 1. Annual-mean Northern Hemisphere minus Southern Hemisphere Aerosol
- Loading (Tg) from Gao et al. (2008) in black, and clear-sky net solar radiation (W/m²) in
- 626 CESM LME in red (offset to have zero mean).

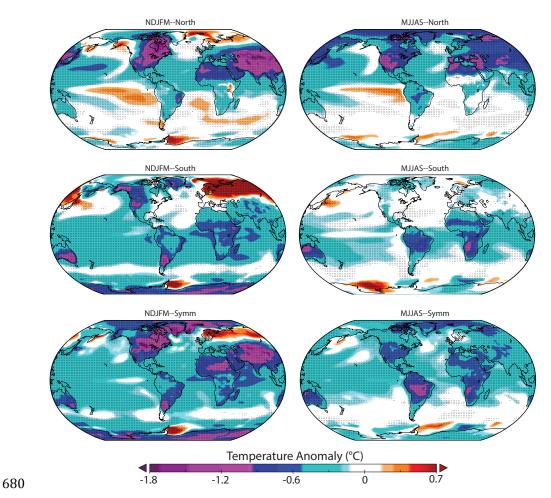
- 628 Figure 2. CESM spatial composite of temperature anomaly (°C) for (top row)
- ASYMM_{NH}, (middle row) ASYMM_{SH}, and (bottom row) SYMM events, each in (left
- 630 column) NDJFM and (right column) MJJAS. Stippling indicates statistical significance
- 631 using a two-sided student's t-test (p < 0.05).
- 632
- 633 Figure 3. Box-and-whisker diagrams showing the (red fill) global mean, (green fill) NH
- 634 mean, and (blue fill) SH mean temperature anomaly to the ASYMM_{NH}, ASYMM_{SH}, and
- 635 SYMM eruption cases on vertical axis. All events are normalized by a 20 Tg global
- 636 loading size. For GISS-E2, loadings were multiplied by a factor of two to approximately
- 637 account for the over-inflated forcing prior to analysis. Results shown for the CESM and
- 638 GISS-E2 model and for NDJFM and MJJAS, as labeled. Black solid line indicates the
- 639 median, box width spans the 25-75% quartiles, and tails span the full interval for all
- 640 cases. N=the number of events used in each category, consistent with the number of listed
- events in Table 1 (multiplied by 15 for CESM and 3 for GISS-E2). Bottom panels
- 642 (CTRL) show the spread of 100 randomly selected and non-overlapping events averaged
- 643 over two seasons (relative to the previous five seasons) in a control run.
- 644
- **Figure 4.** As in Figure 2, except for precipitation (mm/day).

646	
647	Figure 5. As in Figure 3, except for precipitation (mm/day, normalized to 20 Tg in the
648	forced simulations; mm/day in the control). N (not shown) is the same as in Figure 3.
649	
650	Figure 6. As in Figures 2 and 4, except for river discharge $(m^3/s, or 10^{-6} \text{ Sverdrups})$.
651	
652	Figure 7. GISS-E2 spatial composite of the oxygen isotope anomaly (per mil) in (top
653	row) ASYMM _{NH} , (middle row) ASYMM _{SH} , and (bottom row) SYMM events in (left
654	column) NDJFM and (right column) MJJAS.
655	
656	Figure 8. a) CESM climatology of atmosphere+ocean energy transport (PW, black),
657	atmosphere only (red), ocean only (dark blue), moisture component of the atmosphere
658	(latent heat, dashed aqua). b) Ensemble/Eruption mean anomaly in atmospheric heat
659	transport for $ASYMM_{NH}$ eruptions in total (red), dry (purple), and latent (aqua)
660	components. Lighter lines associated with the dry and latent components indicate the
661	eruption spread, each averaged over 14 ensemble members. c) As in (b), except for
662	ASYMM _{SH} eruptions. Grey envelope corresponds to the total AET anomaly vs. latitude
663	in a control simulation using 50 realizations of a composite formed from the same dates
664	as the ASYMM $_{\rm NH}$ results (16 "events" with no external forcing). Vertical bars correspond
665	to the range of (aqua) latent and (orange) dry components of AET_{eq} in the control
666	composite.

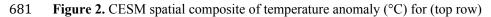


- **Figure 9.** Annual-mean ITCZ shift represented by changes in (topleft) ϕ_{med} and (topright)
- 669 ϕ_{ITCZ} (N = 5) vs. change in AET_{eq}. (bottomleft) Changes in ϕ_{ITCZ} (N = 3) vs. change in
- 670 EFE. See text for definitions. (bottomright) Total AET vs. latitude for a small band
- 671 centered around the equator for all volcanic events in (green) ASYMM_{NH}, (blue)
- 672 ASYMM_{SH}, and (black) SYMM cases. Black dashed line indicates climatological or pre-
- 673 eruption AET values (different choices are indistinguishable). Colored arrows represent
- 674 the direction of anomalous AET_{eq} .

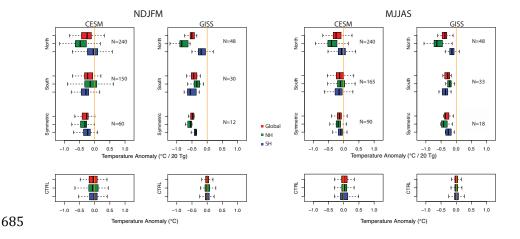
676


677 **Figure 1.** Annual-mean Northern Hemisphere minus Southern Hemisphere Aerosol

678 Loading (Tg) from Gao et al. (2008) in black, and clear-sky net solar radiation (W/m²) in

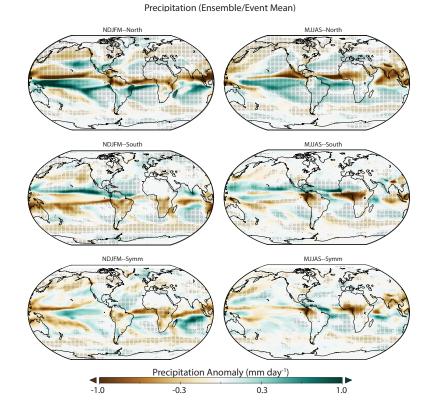

679 CESM LME in red (offset to have zero mean).

Temperature (Ensemble/Event Mean)


682 ASYMM_{NH}, (middle row) ASYMM_{SH}, and (bottom row) SYMM events, each in (left

683 column) NDJFM and (right column) MJJAS. Stippling indicates statistical significance

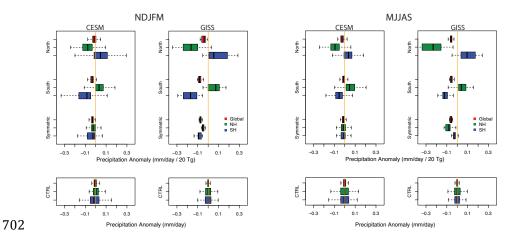
684 using a two-sided student's t-test (p < 0.05).



686 Figure 3. Box-and-whisker diagrams showing the (red fill) global mean, (green fill) NH 687 mean, and (blue fill) SH mean temperature anomaly to the ASYMM_{NH}, ASYMM_{SH}, and 688 SYMM eruption cases on vertical axis. All events are normalized by a 20 Tg global 689 loading size. For GISS-E2, loadings were multiplied by a factor of two to approximately 690 account for the over-inflated forcing prior to analysis. Results shown for the CESM and 691 GISS-E2 model and for NDJFM and MJJAS, as labeled. Black solid line indicates the 692 median, box width spans the 25-75% quartiles, and tails span the full interval for all 693 cases. N=the number of events used in each category, consistent with the number of listed 694 events in Table 1 (multiplied by 15 for CESM and 3 for GISS-E2). Bottom panels 695 (CTRL) show the spread of 100 randomly selected and non-overlapping events averaged 696 over two seasons (relative to the previous five seasons) in a control run.

698 Figure 4. As in Figure 2, except for precipitation (mm/day).

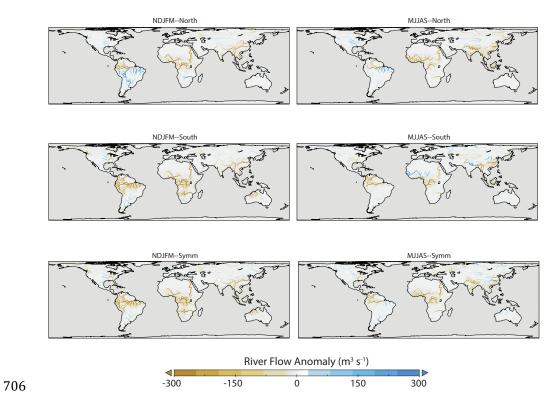
699


697

700

701


Figure 5. As in Figure 3, except for precipitation (mm/day, normalized to 20 Tg in the


forced simulations; mm/day in the control). N (not shown) is the same as in Figure 3.

705

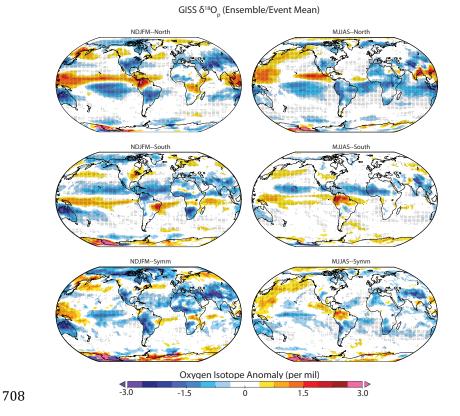
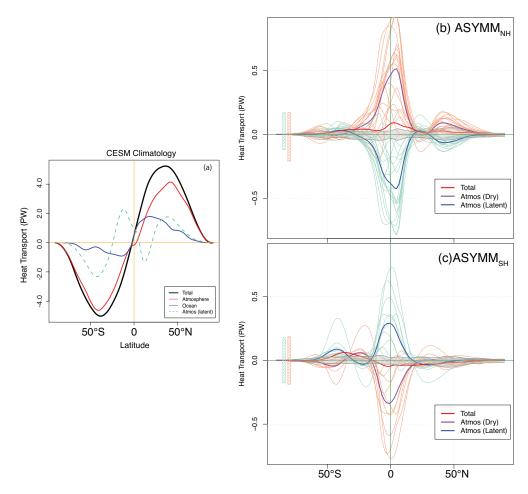


Figure 6. As in Figures 2 and 4, except for river discharge $(m^3/s, or 10^{-6} \text{ Sverdrups})$.


Figure 7. GISS-E2 spatial composite of the oxygen isotope anomaly (per mil) in (top

710 row) ASYMM_{NH}, (middle row) ASYMM_{SH}, and (bottom row) SYMM events in (left

711 column) NDJFM and (right column) MJJAS.

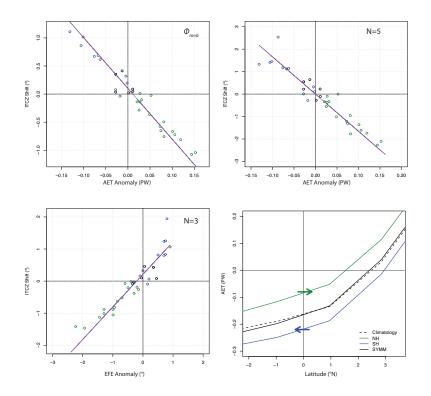
712

Figure 8. a) CESM climatology of atmosphere+ocean energy transport (PW, black),

atmosphere only (red), ocean only (dark blue), moisture component of the atmosphere

715 (latent heat, dashed aqua). b) Ensemble/Eruption mean anomaly in atmospheric heat

transport for ASYMM_{NH} eruptions in total (red), dry (purple), and latent (aqua)


717 components. Lighter lines associated with the dry and latent components indicate the

- ruption spread, each averaged over 14 ensemble members. c) As in (b), except for
- 719 ASYMM_{SH} eruptions. Grey envelope corresponds to the total AET anomaly vs. latitude
- 720 in a control simulation using 50 realizations of a composite formed from the same dates

- as the ASYMM_{NH} results (16 "events" with no external forcing). Vertical bars correspond
- 722 to the range of (aqua) latent and (orange) dry components of AET_{eq} in the control
- 723 composite.

724

Figure 9. Annual-mean ITCZ shift represented by changes in (topleft) ϕ_{med} and (topright)

726 ϕ_{ITCZ} (N = 5) vs. change in AET_{eq}. (bottomleft) Changes in ϕ_{ITCZ} (N = 3) vs. change in

727 EFE. See text for definitions. (bottomright) Total AET vs. latitude for a small band

centered around the equator for all volcanic events in (green) ASYMM_{NH}, (blue)

729 ASYMM_{SH}, and (black) SYMM cases. Black dashed line indicates climatological or pre-

ration 730 eruption AET values (different choices are indistinguishable). Colored arrows represent

731 the direction of anomalous AET_{eq} .

Table 1. List of LM Eruptions

Eruption Category	Seasons in LM Composite	Seasons in LM Composite
	(MJJAS)	(NDJFM)
ASYMM _{NH}	870, 901, 933/934, 1081, 1176/1177,	871, 902, 934, 1082, 1177,
	1213/1214, 1328, 1459, 1476, 1584,	1214/1215, 1329, 1460, 1585,
	1600/1601, 1641/1642, 1719/1720,	1601, 1641/1642, 1720, 1730,
	1762/1763, 1831, 1835/1836	1762/1763, 1832, 1835/1836
ASYMM _{SH}	929, 961, 1158.5/1159.5, 1232, 1268, 1275/1276, 1341/1342, 1452/1453, 1593, 1673, 1693/1694	962, 1159, 1233, 1269, 1276/1277, 1285, 1342, 1453/1454, 1674, 1694
SYMM	854, 1001, 1284/1285, 1416, 1809/1810, 1815/1816	855, 1002, 1810, 1816/1817

732 733 1) Dates of Eruption events used in composite results, based on reconstructed stratospheric sulfate

loadings from Gao et al. (2008).

734 735 Combined dates with a "/" indicate a multi-season event where every inclusive month is first averaged prior to entering the multi-eruption composite.

736 737	References
738	Adam, O., Bischoff, T., and Schneider, T.: Seasonal and interannual variations of the
739	energy flux equator and ITCZ, Part I: Zonally averaged ITCZ position, J. Climate, in
740	press.
741	Allen, R. J., Evan, A. T., and Booth, B. B.: Interhemispheric aerosol radiative forcing and
742	tropical precipitation shifts during the late twentieth century, J. Climate, 28, 8219-
743	8246, doi:10.1175/JCLI-D-15-0148.1, 2015.
744	Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Deuterium and oxygen-18 isotope
745	composition of precipitation and atmospheric moisture, Hydrol. Process., 14, 1341-
746	1355, doi: 10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z,
747	2000.
748	Atwood, A., Wu, E., Frierson, D. M. W., Battisti, D., and Sachs, J. P.: Quantifying
749	Climate Forcings and Feedbacks over the Last Millennium in the CMIP5-PMIP3
750	Models, J. Climate, 29, 1161-1178, doi: 10.1175/JCLI-D-15-0063.1, 2016.
751	Bischoff, T., and Schneider, T.: Energetic constraints on the position of the Intertropical
752	Convergence Zone, J. Climate, 27, 4937-4951, doi:10.1175/JCLI-D-13-00650.1,
753	2014.
754	Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern
755	Hemisphere cooling, Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546,
756	2006.
757	Chiang, J. C. H., and Bitz, C. M.: Influence of high latitude ice cover on the marine
758	Intertropical Convergence Zone, Clim. Dyn., 25, 477-496, doi:10.1007/s00382-005-
759	0040-5, 2005.
760	Chiang, J. C. H., and Friedman, A. R.: Extratropical Cooling, Interhemispheric Thermal

44

- 761 Gradients, and Tropical Climate Change, Ann. Rev. Earth Plan. Sci., 40, 383-412,
- 762 doi:10.1146/annurev-earth-042711-105545, 2012.
- 763 Colose, C. M., LeGrande, A. N., and Vuille, M.: The influence of volcanic eruptions on
- the climate of tropical South America during the last millennium in an isotope-
- real enabled general circulation model, Clim. Past, 12, 961-979, doi:10.5194/cp-12-961-
- 766 2016, 2016.
- 767 Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a
- 1200-yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197,
- 769 doi:10.5194/essd-5-187-2013, 2013.
- 770 Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, doi:10.1111/j.2153-
- 771 3490.1964.tb00181.x, 1964.
- 772 Deser, C., Phillips, A. S., Bourdette, V., and Teng, H.: Uncertainty in climate change
- projections: The role of internal variability, Clim. Dyn., 38, 527–546,
- doi:10.1007/s00382-010-0977-x, 2012.
- 775 Donohoe, A., Marshall, J., Ferreira, D., and McGee, D.: The relationship between ITCZ
- location and cross-equatorial atmospheric heat transport: From the seasonal cycle to
- the last glacial maximum, J. Climate, 26, 3597–3618, doi:10.1175/JCLI-D-12-
- 778 00467.1, 2013.
- Fasullo, J. T., and Trenberth, K. E.: The annual cycle of the energy budget. Part II:
- 780 Meridional structures and poleward transports, J. Climate, 21, 2313–2325,
- 781 doi:10.1175/2007JCLI1936.1, 2008.

- 782 Friedman, A. R., Hwang, Y.-T., Chiang, J. C. H., and Frierson, D. M. W.: The
- interhemispheric thermal gradient over the 20th century and in future projections, J.
- 784 Climate, 26, 5419-5433, doi: 10.1175/JCLI-D-12-00525.1, 2013.
- 785 Frierson, D. M. W., and Hwang, Y.-T.: Extratropical influence on ITCZ shifts in slab
- ocean simulations of global warming, J. Climate, 25, 720–733, doi:10.1175/JCLI-D-
- 787 11-00116.1, 2012.
- 788 Frierson, D. M. W., Hwang, Y.-T., Fuckar, N. S., Seager, R., Kang, S. M., Donohoe, A.,
- 789 Maroon, E. A., Liu, X., and Battisti, D. S.: Contribution of ocean overturning
- circulation to tropical rainfall peak in the Northern Hemisphere, Nat. Geosci., 6, 940–
- 791 944, doi:10.1038/ngeo1987, 2013.
- Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500
- years: An improved ice core-based index for climate models, J. Geophys. Res.
- 794 Atmos., 113, D23111, doi:10.1029/2008JD010239, 2008.
- Haywood, J. M., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric forcing from
- stratospheric aerosols impacts Sahelian rainfall, Nat. Clim. Change, 3, 660–665,
- 797 doi:10.1038/NCLIMATE1857, 2013.
- 798 Hurrell, J. W., et al., The Community Earth System Model: A framework for
- collaborative research, Bull. Am. Meteorol. Soc., 94, 1339–1360,
- doi:10.1175/BAMS-D-12-00121, 2013.
- 801 Hwang, Y.-T., and Frierson, D. M. W.: Link between the double-Intertropical
- 802 Convergence Zone problem and cloud biases over the Southern Ocean, Proc. Natl.
- 803 Acad. Sci., 110, 4935–4940, doi:10.1073/pnas.1213302110, 2013.
- 804 Hwang, Y.-T., Frierson, D. M. W., and Kang, S. M.: Anthropogenic sulfate aerosol and

- the southward shift of tropical precipitation in the 20th century, Geophys. Res. Lett.,
- 806 40, 1-6, doi: 10.1002/grl50502, 2013.
- 807 Iles, C. E., Hegerl, G. C., Schurer, A. P., and Zhang, X.: The effect of volcanic eruptions
- on global precipitation, J. Geophys. Res. Atmos., 118, 8770–8786,
- doi:10.1002/jgrd.50678, 2013.
- 810 Iles, C. E., and Hegerl, G. C., The global precipitation response to volcanic eruptions in
- the CMIP5 models, Environ. Res. Lett., 9, 104012, doi:10.1088/1748-
- 812 9326/9/10/104012, 2014.
- 813 Kang, S. M., Held, I. M., Frierson, D. M. W., and Zhao, M.: The response of the ITCZ to
- 814 extratropical thermal forcing: Idealized slab ocean experiments with a GCM, J.
- 815 Climate, 21, 3521–3532, doi:10.1175/2007JCLI2146.1, 2008.
- 816 Kang, S. M., Frierson, D. M. W., and Held, I. M.: The tropical response to extratropical
- 817 thermal forcing in an idealized GCM: The importance of radiative feedbacks and
- 818 convective parameterization, J. Atmos. Sci., 66, 2812–2827,
- doi:10.1175/2009JAS2924.1, 2009.
- 820 Kang, S. M., Seager, R., Frierson, D. M. W., and Liu, X.: Croll revisited: Why is the
- 821 northern hemisphere warmer than the southern hemisphere?, Clim. Dyn., 44, 1457–
- 822 1472, doi:10.1007/s00382-014-2147-z, 2014.
- 823 Kravitz, B., and Robock, A.: Climate effects of high-latitude volcanic eruptions: Role of
- the time of year, J. Geophys. Res., 116, D01105, doi:10.1029/2010JD014448, 2011.
- 825 Lacis, A., Hansen, J. and Sato, M.: Climate forcing by stratospheric aerosols, Geophys.
- 826 Res. Lett., 19, 1607-1610, doi:10.1029/92GL01620, 1992.
- 827 Lacis, A.: Volcanic aerosol radiative properties, PAGES Newsletter, 23, 2, 50-51, 2015.

- 828 LeGrande, A.N., and Schmidt, G.A.: Ensemble, water-isotope enabled, coupled general
- circulation modeling insights into the 8.2-kyr event, Paleoceanogr., 23, PA3207,
- doi:10.1029/2008PA001610, 2008.
- 831 LeGrande, A.N., and Schmidt, G.A.: Sources of Holocene variability of oxygen isotopes
- in paleoclimate archives, Clim. Past, 5, 441-455, doi:10.5194/cp-5-441-2009, 2009.
- 833 LeGrande, A.N., and Anchukaitis, K. J.: Volcanic eruptions and climate, PAGES
- 834 Newsletter, 23, 2, 46-47, 2015.
- 835 Liu, F., Chai, J., Wang, B., Liu, J., Zhang, X., Wang, Z.: Global monsoon precipitation
- responses to large volcanic eruptions, Sci. Rep., 6, 24331, doi: 10.1038/srep24331,
 2016.
- 838 Mann, G., Dhomse, S., Deshler, T., Timmreck, C., Schmidt, A., Neely, R., and
- 839 Thomason, L.: Evolving particle size is the key to improved volcanic forcings,
- 840 PAGES Newsletter., 23, 2, 52-53, 2015.
- 841 Maroon, E. A., Frierson, D. M. W., Kang, S. M., and Scheff, J.: The precipitation
- response to an idealized subtropical continent, J. Climate, doi:10.1175/JCLI-D-15-
- 843 0616.1, in press.
- 844 Marshall, J., Donohoe, A., Ferreira, D., and McGee, D.: The ocean's role in setting the
- mean position of the Intertropical Convergence Zone, Clim. Dyn., 42, 1967–1979,
- doi:10.1007/s00382-013-1767-z, 2013.
- 847 McGee, D., A. Donohoe, J. Marshall, D. Ferreira, Changes in ITCZ location and cross-
- 848 equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the
- 849 mid-Holocene, Earth Plan. Sci. Lett., 390, 69-79, doi:10.1016/j.epsl.2013.12.043,
- 850 2014.

- 851 Miller, R.L., et al., CMIP5 historical simulations (1850-2012) with GISS-E2 ModelE2. J.
- Adv. Model. Earth Syst., 6(2), 441-477, doi:10.1002/2013MS000266, 2014.
- 853 Neelin, J. D. and Held, M.: Modeling tropical convergence based on the moist static
- energy budget, Mon. Wea. Rev., 115, 3-12, doi: 10.1175/1520-
- 855 0493(1987)115<0003:MTCBOT>2.0.CO;2, 1987.
- 856 Oleson, K. W., et al., Technical description of version 4.0 of the Community Land Model
- 857 (CLM), NCAR Tech. Note NCAR/TN-478+STR, 257 pp., Natl. Cent. for Atmos.
- 858 Res., Boulder, Colo, 2010.
- 859 Oman, L., Robock, A., Stenchikov, G., Schmidt, G. A., and Ruedy, R.: Climatic response
- to high latitude volcanic eruptions, J. Geophys. Res, 110, D13103,
- doi:10.1029/2004JD005487, 2005.
- 862 Oman, L., Robock, A., Stenchikov, G. L., and Thordarson, T.: High-latitude eruptions
- cast shadow over the African monsoon and the flow of the Nile, Geophys. Res. Lett.,
- 864 33, L18711, doi:10.1029/2006GL027665, 2006.
- 865 Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C., Casado,
- 866 M., and Yiou, P.: A model-tested North Atlantic Oscillation reconstruction for the
- 867 past millennium, Nature, 523, 71–74, doi:10.1038/nature14518, 2015.
- 868 Otto-Bliesner, B. L., Brady, E. C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S.,
- 869 Rosenbloom, N., Mai, A., and Strand, G.: Climate Variability and Change since 850
- 870 C.E, Climate variability and change since 850 C.E.: An ensemble approach with the
- 871 Community Earth System Model (CESM), Bull. Am. Meteorol. Soc.,
- doi:10.1175/BAMS-D-14-00233.1, 2016, in press.
- 873 Oueslati, B., and Bellon, G., The double ITCZ bias in CMIP5 models: interaction

- between SST, large-scale circulation and precipitation, Clim. Dyn., 44, 585-607,
- doi:10.1007/s00382-015-2468-6, 2015.
- Pausata, F. S. R., Chafik, L., Caballero, R., and Battisti, D. S.: Impacts of a high-latitude
- volcanic eruption on AMOC and ENSO, Proc. Nat. Acad. Sci., 112, 13784-13788,
- doi: 10.1073/pnas.1509153112, 2015.
- 879 Ridley, H. E., et al., Aerosol forcing of the position of the intertropical convergence zone
- since AD 1550, Nat. Geosci., 8, 195-200, doi:10.1038/ngeo2353, 2015.
- 881 Robock, A. and Mao, J.: Winter warming from large volcanic eruptions, Geophys. Res.
- 882 Lett., 19, 2405-2408, doi:10.1029/92GL02627, 1992.
- 883 Robock, A. and Mao, J.: The volcanic signal in surface temperature observations. J.
- 884 Climate, 8, 1086-1103, doi:10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2,
 885 1995.
- 886 Robock, A., Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
- doi:10.1029/1998RG000054, 2000.
- 888 Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: Stratospheric aerosol
- optical depths, 1850-1990, J. Geophys. Res., 98, 22987-22994,
- doi:10.1029/93JD02553, 1993.
- 891 Schmidt, G. A., Hoffmann, G., Shindell, D. T., and Hu, Y.: Modeling atmospheric stable
- 892 water isotopes and the potential for constraining cloud processes and stratosphere-
- troposphere water exchange, J. Geophys. Res., 110, D21314,
- doi:10.1029/2005JD005790, 2005.
- 895 Schmidt, G. A., LeGrande, A. N., and Hoffmann, G.: Water isotope expressions of
- intrinsic and forced variability in a coupled ocean-atmosphere model, J. Geophys.

- 897 Res., 112, D10103, doi:10.1029/2006JD007781, 2007.
- 898 Schmidt, G.A., et al., , Climate forcing reconstructions for use in PMIP simulations of the
- last millennium (v1.0), Geosci. Model Dev., 4, 33-45, doi:10.5194/gmd-4-33-2011,
- 900 2011.
- 901 Schneider, T., Bischoff, T., and Haug, G. H.: Migrations and dynamics of the
- 902 Intertropical Convergence Zone, Nature, 513, 45–53, doi:10.1038/nature13636, 2014.
- 903 Shindell, D. T., Schmidt, G. A., Mann, M. E., and Faluvegi, G.: Dynamic winter climate
- 904 response to large tropical volcanic eruptions since 1600, J. Geophys. Res., 109,
- 905 D05104, doi:10.1029/2003JD004151, 2004.
- Sigl, M., et al., Timing and climate forcing of volcanic eruptions for the past 2,500 years,
- 907 Nature, 523, 543-549, doi:10.1038/nature14565, 2015.
- 908 Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K., and
- 909 Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo eruption,
- 910 Effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 107, 4803,
- 911 doi:10.1029/2002JD002090, 2002.
- 912 Stothers, R. B.: The Great Tambora Eruption in 1815 and its aftermath, Science, 224,
- 913 1191–1198, doi:10.1126/science.224.4654.1191, 1984.
- 914 Trenberth, K. E., and Dai, A.: Effects of Mount Pinatubo volcanic eruption on the
- hydrological cycle as an analog of geoengineering, Geophys. Res. Lett., 34, L15702,
- 916 doi:10.1029/2007GL030524, 2007.
- 917 Trenberth, K. E., and Caron, J. M.: Estimates of meridional atmosphere and ocean heat
- 918 transports, J. Climate, 14, 3433-3443, doi:10.1175/1520-
- 919 0442(2001)014<3433:EOMAAO>2.0.CO;2, 2001.

- 920 Vuille, M., Bradley, R. S., Werner, M., Healy, R., and Keimig, F.: Modeling d¹⁸O in
- 921 precipitation over the tropical Americas: 1. Interannual variability and climatic
- 922 controls, J. Geophys. Res., 108, D6, 4174, doi:10.1029/2001JD002038, 2003.
- 923 Wunsch, C., The total meridional heat flux and its oceanic and atmospheric partition, J.
- 924 Climate, 18, 4374–4380, doi:10.1175/JCLI3539.1, 2005.
- 925 Yoshimori, M., and Broccoli, A. J.: Equilibrium response of an atmosphere-mixed layer
- 926 288 ocean model to different radiative forcing agents: Global and zonal mean
- 927 response, J. Climate, 21, 4399-4423, doi:10.1175/2008jcli2172.1, 2008.
- 928 Yoshimori, M., and Broccoli, A. J.: On the link between Hadley circulation changes and
- radiative feedback processes, Geophys. Res. Lett., 36, L20703,
- 930 doi:10.1029/2009GL040488, 2009.
- 931
- 932
- 933